

Total RNA Isolation

User Manual NucleoSpin® RNA XS

May 2008/Rev. 02

Protocol-at-a-glance (Rev. 02)

Total RNA Isolation

XS

NucleoSpin[®] RNA XS

1	Supply sample		use up to 5 x 10⁵ cultured cells or 5 mg tissue samples
2	Cell lysis and homogenization		100 μl RA1 2 μl TCEP mix
3	Carrier RNA		5 μl Carrier RNA working solution mix
4	Filtration of the lysate <i>(optional)</i>	\bigcirc	30 sec 11,000 x <i>g</i>
5	Adjust RNA binding conditions		100 µl 70% ethanol mix
6	Bind RNA	\bigcirc	load lysate 30 sec 11,000 x <i>g</i>
7	Desalt silica membrane	Õ	100 µl MDB 30 sec 11,000 x <i>g</i>
8	Digest DNA		25 μl DNase reaction mixture 15 min, RT
9	Wash and dry silica membrane	Õ	 Image: Wash 100 µl RA2 2 min, RT 30 sec 11,000 x g Image: Wash 400 µl RA3 2 min 11,000 x g Image: Wash 200 µl RA3 2 min 11,000 x g
10	Elute highly pure RNA		10 μl H₂O, RNase-free 30 sec 11,000 x <i>g</i>

MACHEREY-NAGEL GmbH & Co. KG • Neumann-Neander-Str. 6-8 • D-52355 Düren • Germany Tel.: +49 (0) 24 21 969 270 • Fax: +49 (0) 24 21 969 279 • e-mail: tech-bio@mn-net.com

Table of contents

1	Con	ponents	4
	1.1	Kit contents	4
	1.2	Consumables and equipment to be supplied by user	5
	1.3	About this User Manual	5
2	Proc	luct description	6
	2.1	The basic principle	6
	2.2	Kit specifications	6
	2.3	Handling, preparation, and storage of starting materials	9
	2.4	Elution procedures	10
	2.5	Stability of isolated RNA	10
3	Stor	age conditions and preparation of working solutions	11
4	Safe	ety instructions – risk and safety phrases	13
5	Prot	ocols	14
	5.1	Total RNA purification from cultured cells, laser captured cells, or microdissected cryosections with NucleoSpin [®] RNA XS	14
	5.2	Total RNA purification from tissue with NucleoSpin [®] RNA XS	17
	5.3	Clean-up and concentration of RNA with NucleoSpin [®] RNA XS	21
	5.4	Support protocol NucleoSpin [®] RNA XS: rDNase digestion in the eluate	23
6	Арр	endix	25
	6.1	Troubleshooting	25
	6.2	Ordering information	29
	6.3	Literature	29
	6.4	Product use restriction / warranty	30

1 Components

1.1 Kit contents

	Ν	lucleoSpin [®] RNA X	S
Cat. No.	10 preps 740902.10	50 preps 740902.50	250 preps 740902.250
Lysis Buffer RA1	2 x 1.8 ml	25 ml	80 ml
Wash Buffer RA2	2 x 1 ml	15 ml	2 x 15 ml
Wash Buffer RA3 (Concentrate)*	2 ml	7 ml	2 x 20 ml
Membrane Desalting Buffer MDB	1.8 ml	10 ml	50 ml
Reaction Buffer for rDNase	0.5 ml	3 ml	20 ml
rDNase, RNase-free (lyophilized)*	1 vial (size A)	1 vial (size C)	2 vials (size D)
Carrier RNA*	300 µg	300 µg	300 µg
Reducing Agent TCEP*	14 mg	3 x 14 mg	2 x 107 mg
H ₂ O, RNase-free	5 ml	15 ml	25 ml
NucleoSpin [®] Filters (violet rings)	10	50	5 x 50
NucleoSpin [®] RNA XS Columns (light blue rings plus Collection Tubes)	10	50	250
Collection Tubes (2 ml)	30	150 (3 x 50)	750 (3 x 250)
Collection Tubes (1.5 ml)	10	50	250
User Manual	1	1	1

^{*} For preparation of working solutions and storage conditions see section 3.

1.2 Consumables and equipment to be supplied by user

Consumables:

- 70% ethanol
- 96-100% ethanol (only for clean-up protocol)
- 1.5 ml microcentrifuge tubes (for sample lysis)
- Disposable pipette tips

Equipment:

- Manual pipettors
- Centrifuge for microcentrifuge tubes
- Vortex mixer
- Personal protection equipment (lab coat, gloves, goggles)

1.3 About this User Manual

Experienced users who are performing the isolation of total RNA using a **NucleoSpin[®] RNA XS** isolation kit may refer to the Protocol-at-a-glance instead of this User Manual. The Protocol-at-a-glance is designed to be used only as a supplemental tool for quick referencing while performing the purification procedure. First-time users are strongly advised to read this User Manual.

2 **Product description**

2.1 The basic principle

One of the most important aspects in the isolation of RNA is to prevent degradation of the RNA during the isolation procedure. With the **NucleoSpin® RNA** methods, cells are lysed by incubation in a solution containing large amounts of chaotropic ions. This lysis buffer immediately inactivates RNases – which are present in virtually all biological materials – and creates appropriate binding conditions which favor adsorption of RNA to the silica membrane. Contaminating DNA, which is also bound to the silica membrane, is removed by an rDNase solution which is directly applied onto the silica membrane during the preparation (RNase-free rDNase is supplied with the kit). Simple washing steps with two different buffers remove salts, metabolites and macromolecular cellular components. Pure RNA is finally eluted under low ionic strength conditions with RNase-free H₂O (supplied).

The RNA preparation using **NucleoSpin[®] RNA** kits can be performed at room temperature. The eluate, however, should be treated with care because RNA is very sensitive to trace contaminations of RNases, often found on general lab ware, fingerprints and dust. To ensure RNA stability keeps RNA frozen at -20°C for short-term or -70°C for long-term storage.

2.2 Kit specifications

- The NucleoSpin[®] RNA XS kit is recommended for the isolation of total RNA from very small samples. Typical sample material comprises small amounts of cells (up to 5 x 10⁵) and tissue (up to 5 mg) such as pellets of cultured cells, laser-captured cells, microdissected cryosections, biopsy samples, fine needle aspirates and flow cytometer sorted cells (Table 1, page 7).
- The innovative column design with a funnel shaped thrust ring and a small silica membrane area allows elution of RNA in as little as 5-30 µl. Thus, **highly concentrated RNA** is eluted and is ready for common downstream applications (e.g. RT-PCR).
- The **RNA yield** strongly depends on the sample type, quality and amount (see Table 2, page 7 for details).
- High quality RNA (RNA Integrity Number (RIN) >9 according to Agilent 2100 Bioanalyzer assays) can be obtained from small samples (e.g. 10³ cells, 0.1 mg tissue) as well as from larger samples (10⁵ cells, 5 mg tissue). rRNA ratios (28S/18S) of 1.8-2.0 can be obtained. Since RNA quality always depends on the sample quality, see section 6.3 for further aspects.
- The NucleoSpin[®] RNA XS kit allows purification of RNA with an A₂₆₀/A₂₈₀ ratio generally exceeding 1.9 (measured in TE buffer pH 7.5). Due to the high RNA purity large amounts of eluates can be used as template in RT-PCR without inhibition (e.g. 8 µl of 10 µl eluates as template in a 20 µl qRT-PCR setup generating stronger signal compared to reactions with less template in a LightCycler PCR with the Sigma SYBR Green Quantitative RT-PCR Kit).

- The **preparation time** is approximately 45 min for 12 samples.
- As **reducing agent** TCEP (Tris(2-carboxyethyl)phosphine) is supplied in the kit. TCEP is odorless, more stable, more specific for disulfide-bonds, and less toxic than other commonly used reducing agents.
- **Carrier RNA** (poly(A) RNA: poly(A) potassium salt, prepared from ADP with polynucleotide phosphorylase) is included for optimal performance with smallest samples.
- **rDNase** is supplied in the kit. DNA contaminations are removed by on-column digestion with rDNase. For most demanding applications (e.g. expression analysis of plasmid transfected cells, plastidial or mitochondrial genes) a subsequent digestion with rDNase in the eluate is possible.

Table 1: Kit specifications at a glance		
	NucleoSpin [®] RNA XS	
Sample size	up to 5 x 10 ⁵ cells up to 5 mg tissue	
Yield	see table 2 for examples	
Elution volume	5 – 30 µl	
Binding capacity	> 50 µg	
Maximum loading volume	600 µl	
Time/prep	45 min/ 12 preps	
Spin column type	NucleoSpin [®] XS columns	

Table 2: Overview on average yields of total RNA isolation using NucleoSpin [®] RNA XS		
Sample	Average yield	
10 ⁵ HeLa cells	1000 – 1500 ng	
10 ⁴ HeLa cells	100 – 150 ng	
10 ³ HeLa cells	10 – 15 ng	
10 ² HeLa cells	0.1 – 1.5 ng	
5 mg mouse kidney	5 – 8 µg	
1 mg mouse kidney	2 µg	

2.3 Handling, preparation, and storage of starting materials

RNA is not protected against digestion until the sample material is flash frozen or disrupted in the presence of RNase inhibiting or denaturing agents. Therefore it is important that samples are flash frozen in liquid N₂ immediately and stored at -70°C, or processed as soon as possible. Samples can be stored in Lysis Buffer RA1^{*} (+ TECP) after disruption at -70°C for up to one year, at +4°C for up to 24 hours or up to several hours at room temperature. Frozen samples are stable up to 6 months. Frozen samples in Buffer RA1^{*} (+ TCEP) should be thawed slowly before starting with the isolation of total RNA.

Wear gloves at all times during the preparation. Change gloves frequently.

Cultured animal cells are collected by centrifugation and directly lysed by adding Buffer RA1 according to step 2 of the standard protocol (see section 5).

Cell lysis of adherent growing cells in a culture dish:

Completely aspirate cell-culture medium, and continue immediately with the addition of Lysis Buffer RA1 to the cell-culture dish. Avoid incomplete removal of the cell-culture medium in order to allow full lysis activity of the lysis buffer.

To trypsinize adherent growing cells:

Aspirate cell-culture medium, and add an equal amount of PBS in order to wash the cells. Aspirate PBS. Add 0.1-0.3% trypsin in PBS and incubate for an appropriate time to detach the cells from the dish surface. After cell detachment, add medium, transfer cells to an appropriate tube (not supplied), and pellet by centrifugation for 5 min at 300 x g. Remove supernatant and continue with the addition of lysis buffer to the cell pellet.

Human and animal tissues are often tough and should be disrupted mechanically to be available for lysis. Depending on the disruption method, the viscosity of the lysed sample has to be reduced further for optimal results. It is essential for efficient RNA preparation that all the RNA contained in the sample is released from the cells by disruption and that the viscosity of the sample is reduced by homogenization.

Thawing of undisrupted animal tissue should only be done in the presence of Buffer RA1 under simultaneous mechanical disruption, e.g. with a rotor-stator homogenizer or a bead mill. This ensures that the RNA is not degraded by RNases before the preparation has started.

Commonly used techniques for disruption of animal tissues are e.g. grinding with **pestle and mortar** or using **a syringe and needle** for multiple passage of the sample through the needle. However, due to the small size of samples to be processed with **NucleoSpin[®] RNA XS** these disruption methods are often not suitable.

^{*} Add TCEP optional before or after freezing.

Recommended disruption and homogenization methods

The simple addition of lysis buffer and subsequent vortexing is usually sufficient to disrupt and homogenize e.g. up to 10^4 cultured cells, laser captured cells, or microdissected cryosections.

Tissue can be homogenized using a **rotor-stator homogenizer**. The spinning rotor disrupts and simultaneously homogenizes the sample which is submerged in lysis buffer by shearing within seconds up to minutes (homogenization time depends on sample). Keep the rotor tip submerged to avoid <u>excess</u> foaming. Select a suitably sized homogenizer (5-7 mm diameter rotors can be used for homogenization in microcentrifuge tubes).

Bead-milling disrupts the tissue samples, submerged in lysis buffer, by rapid agitation in the presence of beads. Suitable disruption parameters (type, size and number of beads, tube type, speed and time of agitation) have to be determined empirically for each application.

2.4 Elution procedures

A high RNA concentration in the elution fraction is desirable for all typical downstream applications. In particular with regard to limited volumes of reaction mixtures, high RNA concentration can be a crucial criterion. Due to a high default elution volume, standard kits often result in weakly concentrated RNA, if only small samples are processed.

Such RNA often even requires a subsequent concentration to be suitable for the desired application.

In contrast to standard kits, **NucleoSpin[®] RNA XS** allows an efficient elution in a very small volume resulting in highly concentrated RNA.

Elution volumes in the range of 5-30 μl are recommended, the default volume is 10 $\mu l.$

2.5 Stability of isolated RNA

Eluted RNA should immediately be put and always kept on ice during work for optimal stability! Contamination with almost omnipresent RNases (general lab ware, fingerprints, dust) may be a risk for isolated RNA. For short-term storage freeze at -20°C, for long-term storage freeze at -70°C.

3 Storage conditions and preparation of working solutions

Attention:

Buffers RA1, RA2, and MDB contain guanidine thiocyanate. Wear gloves and goggles!

- Store lyophilized **rDNase**, **Reducing Agent TCEP**, and **Carrier RNA** at +4°C on arrival (stable up to 1 year).
- All other kit components should be stored at room temperature (20-25°C) and are stable up to one year. Storage at lower temperatures may cause precipitation of salts.
- Check that 70% ethanol is available as additional solution in the lab to adjust RNA binding conditions in the Buffer RA1 lysate.
- Check that 96-100% ethanol is available (necessary for clean-up protocol only).

Before starting with any NucleoSpin[®] RNA XS protocol prepare the following:

- rDNase: Add indicated volume (see following table or label on the rDNase vial) of RNase-free H₂O to the rDNase vial and incubate for 1 min at room temperature. Gently swirl the vials to completely dissolve the rDNase. Be careful not to mix rDNase vigorously as rDNase is sensitive to mechanical agitation. Dispense into aliquots and store at -20°C. The frozen working solution is stable for 6 months. Do not freeze/thaw the aliquots more than three times.
- **Reducing Agent TCEP:** Add indicated volume of RNase-free H₂O to the TCEP vial and incubate for several minutes at room temperature. Mix the vial to completely dissolve the TCEP. Store dissolved TCEP at -20°C.
- Carrier RNA: Prepare a stock solution before first time using: Dissolve the Carrier RNA in 750 µl RA1 to obtain a 400 ng/µl stock solution. Prepare a working solution before RNA extraction: Dilute 1:100 with RA1 (e.g. 1 µl Carrier RNA stock solution + 99 µl RA1) to obtain the working solution of 4 ng/µl. Add 5 µl of this working solution (20 ng) to every lysate (protocol step 3 in section 5). Store stock solution at -20°C; do not store working solution, prepare it freshly immediately before use.
- Wash Buffer RA3: Add the indicated volume of 96-100% ethanol to Wash Buffer RA3 Concentrate. Store Wash Buffer RA3 at room temperature (20-25°C) for up to one year.

		NucleoSpin [®] RNA X	S
Cat. No.	10 preps 740902.10	50 preps 740902.50	250 preps 740902.250
Wash Buffer RA3 (Concentrate)	2 ml add 8 ml ethanol	7 ml add 28 ml ethanol	2 x 20 ml add 80 ml ethanol to each bottle
rDNase (lyophilized)	1 vial (size A) add 55 µl RNase-free H₂O	1 vial (size C) add 230 μl RNase-free H₂O	2 vials (size D) add 540 µl RNase-free H₂O to each vial
Carrier RNA		300 μg A1 to obtain concentrat) with RA1 to obtain wo	
Reducing Agent TCEP	14 mg add 100 µl RNase-free H₂O	3 x 14 mg add 100 μl RNase-free H₂O to each vial	2 x 107 mg add 750 μl RNase-free H ₂ O to each vial

4 Safety instructions – risk and safety phrases

The following components of the ${\bf NucleoSpin}^{\circledast}$ RNA XS kit contain hazardous contents.

Wear gloves and goggles and follow the safety instructions given in this section.

Component	Hazard Contents	Hazard Symbol		Risk Phrases	Safety Phrases
rDNase	rDNase, Iyophilized	× Xi*	May cause sensitization by inhalation and skin contact.	R 42/43	S 22-24
Buffer RA1	Guanidine thiocyanate	★ [∗] Xn*	Harmful by inhalation, in contact with skin and if swallowed.	R 20/21/22	S 13
Buffer RA2	Guanidine thiocyanate	★ [∞] Xn*	Flammable. Harmful by inhalation, in contact with skin and if swallowed.	R 10- 20/21/22	S 7-13-16
MDB	Guanidine thiocyanate < 10 % + ethanol < 10%		Flammable.	R 10	S 7-16
Reducing Agent TCEP	Tris (2- carboxylethyl) phosphine Hydrochloride	X , Xi 	Causes burns.	R 34	S 26-27- 36/37/39

Risk Phrases

R 10	Flammable

- R 20/21/22 Harmful by inhalation, in contact with the skin and if swallowed
- R 42/43 May cause sensitization by inhalation and skin contact
- R 34 Causes burns

Safety Phrases

- S 7 Keep container tightly closed
- S 13 Keep away from food, drink and animal feedstuffs
- S 16 Keep away from sources of ignition No Smoking!
- S 22 Do not breathe dust
- S 24 Avoid contact with the skin
- S 26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
- S 27 Take off immediately all contaminated clothing
- S 36/37/39 Wear suitable protective clothing, glovers and eye/face protection

^{*} Label not necessary, if quantity below 125 g or ml (according to 67/548/EEC Art. 25, 1999/45/EC Art. 12 and German GefStoffV § 42 and TRGS 200 7.1)

^{**} Label not necessary, if quantity below 25 g or ml (according to 67/548/EEC Art. 25, 1999/45/EC Art.12 and German GefStoffV § 42 and TRGS 200 7.1)

5 Protocols

Before starting the preparation, prepare TCEP, Carrier RNA, rDNase, and Wash Buffer RA3 according to section 3.

5.1 Total RNA purification from cultured cells, laser captured cells, or microdissected cryosections with NucleoSpin[®] RNA XS

1 Supply sample

Provide sample such as a pellet of up to 5×10^5 cultured cells, laser captured cells or microdissected cryosections in a microcentrifuge tube (not provided).

For appropriate sample amounts see section 2.2.

2 Cell lysis and homogenization

Add **100 \muI Buffer RA1** and **2 \muI TCEP** to the cell sample and vortex vigorously (2 x 5 sec).

If multiple samples are processed, the preparation of a master-premix is recommended (e.g. 1.1 ml RA1 and 22 μ l TCEP for 10 preparations). Use 102 μ l of the premix.

This procedure is usually sufficient to homogenize cultured cells, laser captured cells, or microdissected cryosections. For further comments on homogenization methods see section 2.3.

3 Carrier RNA

Add **5** μ **I** Carrier RNA working solution (20 ng) to the lysate. Mix by vortexing (2 x 5 sec). Spin down briefly (approx. 1 sec 1000 x g) to clear the lid.

For preparation of Carrier RNA working solution see section 3.

4 Filtration of the lysate (optional)

Place a **NucleoSpin[®] Filter** (violet ring) in a Collection Tube (2 ml; supplied), apply the mixture, and centrifuge for **30 sec** at **11,000 x** g.

This step may be skipped when working with small amounts of sample, e.g. less than 10^5 cells.

mix

30 sec 11,000 x *g*

5 Adjust RNA binding conditions

Discard the NucleoSpin[®] Filter (violet ring). Add 100 µl ethanol (70%) to the homogenized lysate and mix by pipetting up and down (5 times).

Alternatively, add **100 \muI ethanol (70%)** to the sample in a 1.5 ml microcentrifuge tube (not provided) and mix by vortexing (2 x 5 sec). Spin down **briefly** (approx. 1 sec 1000 x g) to clear the lid. Pipet lysate up and down two times before loading the lysate.

6 Bind RNA

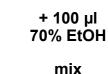
For each preparation, take one NucleoSpin[®] RNA XS Column (light blue ring) placed in a Collection Tube. Load the lysate to the column. Centrifuge for **30 sec** at **11,000** \times *g*.

Place the column in a new Collection Tube (2 ml).

Maximal loading capacity of NucleoSpin[®] RNA XS Columns is 600 μ l. Repeat the procedure if larger volumes are to be processed.

7 Desalt silica membrane

Add **100** μ **I MDB** (Membrane Desalting Buffer) and centrifuge at **11,000** x *g* for **30 sec** to dry the membrane. It is not necessary to use a fresh Collection Tube after this centrifugation step.


Salt removal will make the following rDNase digest much more effective. If the column outlet has come into contact with the flow-through for any reason, discard the flow-through and centrifuge again for 30 sec at $11,000 \times g$.

8 Digest DNA

Prepare **DNase reaction mixture** in a sterile microcentrifuge tube (not provided): for each isolation, add **3 µl** reconstituted **rDNase** (also see section 3) to **27 µl Reaction Buffer for rDNase**. Mix by flicking the tube.

Apply **25 µl DNase reaction mixture** directly onto the center of the silica membrane of the column. Close the lid. Incubate at **room temperature** for **15 min**.

It is not necessary to use a new Collection Tube after the incubation step.

load lysate

30 sec 11,000 × *g*

+ 100 µl MDB

30 sec 11,000 x *g*

9 Wash and dry silica membrane

1st wash

Add **100** μ **I Buffer RA2** to the NucleoSpin[®] RNA XS Column. Incubate for **2 min** at RT. Centrifuge for **30 sec** at **11,000** × *g*.

Place the column into a new Collection Tube (2 ml).

Buffer RA2 will inactivate the rDNase.

2nd wash

Add **400** μ **I** Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for **30 sec** at **11,000** x g. Discard flow-through and place the column back into the Collection Tube.

3rd wash

Add **200** μ **I** Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for **2 min** at **11,000** x g to dry the membrane. Place the column into a nuclease-free Collection Tube (1.5 ml; supplied).

If for any reason, the liquid level in the Collection Tube has reached the NucleoSpin[®] RNA XS Column after centrifugation, discard flow-through and centrifuge again.

10 Elute highly pure RNA

Elute the RNA in **10 \muI H₂O** (RNase-free; supplied) and centrifuge at **11,000 x** *g* for **30 sec**.

If higher RNA concentrations or higher elution volumes are desired, elution volume may be varied in the range of $5 - 30 \mu I$.

For further details on alternative elution procedures see section 2.4.

+ 400 μl RA3 30 sec 11,000 × g

+ 100 µl RA2

2 min RT

30 sec

 $11,000 \times g$

+ 200 µl RA3

2 min 11,000 x *g*

+ 10 µl H₂O, RNase-free

30 sec 11,000 x *g*

5.2 Total RNA purification from tissue with NucleoSpin[®] RNA XS

1 Supply sample

Provide tissue sample such as a biopsy in a microcentrifuge tube (not provided).

For appropriate sample amounts see section 2.2.

2 Cell lysis and homogenization

Add **200** µI Buffer RA1 and **4** µI TCEP to the tissue sample.

Disruption with a rotor-stator homogenizer or with a shaker and steel balls are recommended methods for the homogenization of tissue samples. For further comments on homogenization methods see section 2.3.

If multiple samples are processed, the preparation of a master-premix is recommended (e.g. 2.2 ml Buffer RA1 and 44 μ l TCEP for 10 preparations). Use 204 μ l of the premix.

3 Carrier RNA

Add **5** μ **I** Carrier RNA working solution (20 ng) to the lysate. Mix by vortexing (2 x 5 sec). Spin down briefly (approx. sec 1000 x *g*) to clear the lid.

For preparation of Carrier RNA working solution see section 3.

4 Filtration of the lysate

Reduce viscosity and clear the lysate by filtration through **NucleoSpin**[®] **Filter** (violet ring): Place the NucleoSpin[®] Filter (violet ring) in a Collection Tube (2 ml; provided), apply the mixture, and centrifuge for **30 sec** at **11,000 x** *g*.

In case of visible pellet formation (depending on sample amount and nature), transfer supernatant without any formed pellet to a new 1.5 ml microcentrifuge tube (not included).

mix

30 sec 11,000 x *q*

5 Adjust RNA binding conditions

Discard the NucleoSpin[®] Filter (violet ring), add **200 µl** ethanol (70%) to the homogenized lysate and mix by pipetting up and down (5 times).

Alternatively, transfer flow-through into a new 1.5 ml microcentrifuge tube (not provided), add 200 µl ethanol (70%), and mix by vortexing (2 x 5 sec). Spin down briefly (approx. 1 sec 1000 x g) to clear the lid. Pipet lysate up and down two times before loading the lysate.

After addition of ethanol a stringy precipitate may become visible which will not affect the RNA isolation. Be sure to disaggregate any precipitate by mixing and load all of the precipitate on the column as described in step 6. Do not centrifuge the ethanolic lysate before loading it onto the column in order to avoid pelleting the precipitate.

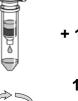
Bind RNA 6

For each preparation, take one NucleoSpin[®] RNA XS **Column** (light blue ring) placed in a Collection Tube and load the lysate to the column. Centrifuge for 30 sec at **11,000** × *q*. Place the column in a new Collection Tube (2 ml).

Maximal loading capacity of NucleoSpin[®] RNA XS Columns is 600 µl. Repeat the procedure if larger volumes are to be processed.

7 Desalt silica membrane

Add 100 µI MDB (Membrane Desalting Buffer) and centrifuge at **11,000 x** *g* for **30 sec** to dry the membrane. It is not necessary to use a fresh Collection Tube after this centrifugation step.


Salt removal will make the following rDNase digest much more effective. If the column outlet has come into contact with the flow-through for any reason, discard the flow-through and centrifuge again for 30 sec at 11,000 x g.

+ 200 µl 70% EtOH

mix

load lysate 30 sec $11.000 \times q$

+ 100 µl MDB 30 sec

11.000 x q

8 Digest DNA

Prepare **DNase reaction mixture** in a sterile microcentrifuge tube (not provided): for each isolation, add **3 µl reconstituted rDNase** (also see section 3) to **27 µl Reaction Buffer for rDNase**. Mix by flicking the tube.

Apply **25 µl DNase reaction mixture** directly onto the center of the silica membrane of the column. Close the lid. Incubate at **room temperature** for **15 min**.

It is not necessary to use a fresh Collecting Tube after the incubation step.

9 Wash and dry silica membrane

1st wash

Add **100** μ **I Buffer RA2** to the NucleoSpin[®] RNA XS Column. Incubate for **2 min** at **RT**. Centrifuge for **30 sec** at **11,000** × *g*.

Place the column into a new Collection Tube (2 ml).

Buffer RA2 will inactivate the rDNase.

2nd wash

Add 400 μ l Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for 30 sec at 11,000 x g. Discard flow-through and place the column back into the Collection Tube.

3rd wash

Add 200 μ l Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for 2 min at 11,000 x g to dry the membrane. Place the column into a nuclease-free Collection Tube (1.5 ml; supplied).

If for any reason, the liquid level in the Collecting Tube has reached the NucleoSpin[®] RNA XS Column after centrifugation, discard flow-through and centrifuge again.

DNase reaction mixture

+ 25 ul

RT 15 min

+ 100 µl RA2

2 min RT

30 sec 11,000 × *g*

+ 400 µl RA3
30 sec
11,000 × <i>g</i>

+ 200 µl RA3 2 min

11,000 x *g*

10 Elute highly pure RNA

Elute the RNA in **10 \muI H₂O** (RNase-free; supplied) and centrifuge at **11,000 x** *g* for **30 sec**.

If higher RNA concentrations or higher elution volumes are desired, elution volume may be varied in the range of $5 - 30 \mu l$.

For further details on alternative elution procedures see section 2.4.

+ 10 µl H₂O, RNase-free

30 sec 11,000 x *g*

5.3 Clean-up and concentration of RNA with NucleoSpin[®] RNA XS

1 Supply sample

Provide up to 300 µl sample such as prepurified RNA (e.g. phenol purified) or RNA from reaction mixtures (e.g. labelling reactions) in a microcentrifuge tube (not provided).

For appropriate sample amounts see section 2.2.

2 Preparation of lysis-binding buffer premix

For every 100 µl of sample combine **25 µl Buffer RA1** with **75 µl ethanol (96-100%)** and mix.

If processing multiple samples, the preparation of a master-premix (1 volume Buffer RA1 plus 3 volumes ethanol 96-100%) is recommended.

3 Carrier RNA

Not necessary!

4 Filtration of the lysate (optional)

Not necessary!

5 Adjust RNA binding conditions

Add **one volume of premix** to the sample (e.g. 100 μ l premix to a 100 μ l sample) and mix (2 x 5 sec). If necessary, spin down briefly (approx. 1 sec 1000 x g) to clear the lid.

6 Bind RNA

For each preparation, take one NucleoSpin[®] RNA XS Column (light blue ring) placed in a Collection Tube. Load the sample to the column. Centrifuge for **30 sec** at **11,000** × *g*.

For samples > 300 μ l, load in two steps.

Place the column in a new Collection Tube (2 ml).

For high demanding applications, the recovery rate can be increased as follows: Centrifuge 30 sec at 2,000 x g prior to centrifugation for 30 sec at $11,000 \times g$.

sample

+ 25 μl RA1 + 75 μl ethanol (96-100%) per 100 μl of sample

mix

add 1 vol. premix to sample

mix (2 x 5 sec)

load sample

30 sec 11,000 × *g*

7 Desalt silica membrane

Not necessary!

8 Digest DNA

Not necessary!

9 Wash and dry silica membrane

1st wash

Add **400** μ **I** Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for **30 sec** at **11,000** x g. Discard flow-through and place the column back into the Collection Tube.

2rd wash

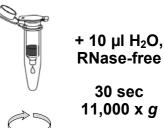
Add **200** μ **I** Buffer RA3 to the NucleoSpin[®] RNA XS Column. Centrifuge for **2 min** at **11,000** x g to dry the membrane. Place the column into a nuclease-free Collection Tube (1.5 ml; supplied).

If for any reason, the liquid level in the Collection Tube has reached the NucleoSpin[®] RNA XS Column after centrifugation, discard flow-through and centrifuge again.

10 Elute highly pure RNA

Elute the RNA in **10** μ I H₂O (RNase-free; supplied) and centrifuge for **30 sec** at **11,000** x g.

If higher RNA concentrations or higher elution volumes are desired, elution volume may be varied in the range of $5 - 30 \mu I$.


For further details on alternative elution procedures see section 2.4.

+ 400 µl RA3

30 sec 11,000 × g

2 min 11,000 x *g*

5.4 Support protocol NucleoSpin[®] RNA XS: rDNase digestion in the eluate

Although the on-column rDNase digestion in the standard protocol is very efficient, there are still certain applications which require even lower contents of residual DNA. The removal of DNA to a completely undetectable level is challenging and the efficiency of an on-column DNA digestion is sometimes not sufficient for downstream applications requiring lowest residual content of DNA.

A typical example for such a demanding application is an RT-PCR reaction in which the primer molecules do not differentiate between cDNA (derived from RNA) and contaminating genomic DNA. Especially, if

- high copy number targets are analyzed (e.g. multi gene family, mitochondrial, plastidal, or plasmid targets (from transfections).
- the target gene is of a very low expression level.
- the amplicon is relatively small (<200 bp).

DNA digestion in solution can efficiently destroy contaminating DNA. This requires stringent RNase control and subsequent repurification of the RNA (in order to remove buffer, salts, DNase, and digested DNA).

The high quality, RNase-free, recombinant DNase (rDNase) in the NucleoSpin[®] RNA XS kits facilitates such a digestion in solution in order to remove even traces of contaminating DNA.

A Digest DNA (Reaction setup)

Prepare enzyme-buffer premix: Add 1 μl rDNase to 10 μl Reaction Buffer for rDNase.

Add 1/10 volume of enzyme-buffer premix to the eluted RNA (e.g. to 10 μI RNA add 1 μI of the premix comprising buffer and enzyme).

B Incubation

Incubate for **10 min** at **37°C**.

C Repurification of RNA

Repurify RNA with a suitable RNA cleanup procedure, e.g. following section 5.3, by ethanol precipitation or with the NucleoSpin[®] RNA Clean-up XS kit (see ordering information).

Ethanol precipitation, exemplary

Add 0.1 volume of 3 M sodium acetate, pH 5.2 and 2.5 volumes of 96 - 100% ethanol to one volume of sample. Mix thoroughly.

Incubate several minutes to several hours at –20°C or +4°C.

Note: Choose long incubation times if the sample contains low RNA concentration. Short incubation times are sufficient if the sample contains high RNA concentration.

Centrifuge for 10 min at max. speed.

Wash RNA pellet with 70% ethanol.

Dry RNA pellet and resuspend RNA in RNase-free H₂O.

6 Appendix

6.1 Troubleshooting

Problem	Possible cause and suggestions
	RNase contamination
RNA is degraded/ no RNA obtained	 Create an RNase free working environment. Wear gloves during all steps of the procedure. Change gloves frequently. Use of sterile, disposable polypropylene tubes is recommended. Keep tubes closed whenever possible during the preparation. Glassware should be oven-baked for at least 2 hours at 250°C before use.
	Reagents not applied or restored properly
	 Reagents not properly restored. Add the indicated volume of RNase-free H₂O to rDNase vial and 96% ethanol to Buffer RA3 Concentrate and mix. Reconstitute and store lyophilized rDNase according to instructions given in section 3.
	 Sample and reagents have not been mixed completely. Always vortex vigorously after each reagent has been added.
Poor RNA quality or yield	 No ethanol has been added after lysis. Binding of RNA to the silica membrane is only effective in the presence of ethanol.
	Kit storage
	 Reconstitute and store lyophilized rDNase according to instructions given in section 3.
	Store kit components as described in section 3.
	 Keep bottles tightly closed in order to prevent evaporation or contamination.

Problem	Possible cause and suggestions
	Ionic strength and pH influence A ₂₆₀ absorption as well as ratio A _{260/280}
	 For adsorption measurement, use 5 mM Tris pH 8.5 as diluent. Please see also: Manchester, K L. 1995. Value of A260/A280 ratios for measurement of purity of nucleic acids. Biotechniques 19, 208- 209. Wilfinger, W W, Mackey, K and Chomczyski, P. 1997. Effect of pH and ionic strength on the spectrophotometric assessment of
Poor RNA quality	nucleic acid purity. Biotechniques 22, 474-481.
or yield (continued)	Sample material
(continued)	 Sample material not stored properly. Whenever possible, use fresh material. If this is not possible, flash freeze the samples in liquid N₂. Samples should always be kept at –70°C. Never allow tissues to thaw before addition of Buffer RA1. Perform disruption of samples immediately after addition of Lysis Buffer RA1.
	 Insufficient disruption and/or homogenization of starting material. Ensure thorough sample disruption and use NucleoSpin[®] Filter for easy homogenization of disrupted starting material.
	Sample material
Clogged NucleoSpin [®] column/Poor	 Too much starting material used. Overloading may lead to decreased overall yield. Reduce amount of sample material or use larger volume of RA1.
RNA quality or yield	 Insufficient disruption and/or homogenization of starting material. Ensure thorough sample disruption and use NucleoSpin[®] Filter for easy homogenization of disrupted starting material.
	rDNase not active
	 Reconstitute and store lyophilized rDNase according to instructions given in section 3.
Contamination	DNase solution not properly applied
of RNA with genomic DNA	 Pipet rDNase solution directly onto the center of the silica membrane and close the lid in order to press the solution into the membrane.
	Too much cell material used
	Reduce quantity of cells or tissue used.

Problem	Possible cause and suggestions				
	DNA detection system too sensitive				
Contamination	The amount of DNA contamination is significantly reduced during the on-column digestion with rDNase. Anyhow it can not be guaranteed that the purified RNA is 100% free of DNA, therefore in very sensitive applications it might be possible to detect DNA. The eventuality of DNA detection with PCR increases with:				
of RNA with genomic DNA (continued)	 the number of DNA copies per preparation: single copy target < plastidial/ mitochondrial target < plasmid transfected into cells decreasing of PCR amplicon size 				
	 Use larger PCR targets (e.g. >500 bp) or intron spanning primers if possible. 				
	 Use support protocol for subsequent rDNase digestion in the eluate (section 5.3). 				
	Carryover of ethanol or salt				
	• Do not let the flow-through touch the column outlet after the second RA3 wash. Be sure to centrifuge at the corresponding speed for the respective time in order to remove ethanolic Buffer RA3 completely.				
Suboptimal performance	 Check if Buffer RA3 has been equilibrated to room temperature before use. Washing at lower temperatures lowers efficiency of salt removal by RA3. 				
of RNA in downstream experiments	 Depending on the robustness of the used RT-PCR system, RT- PCR might be inhibited if complete eluates are used as template for RT-PCR. Use less eluate as template. 				
	Store isolated RNA properly				
	• Eluted RNA should always be kept on ice for optimal stability since trace contaminations of omnipresent RNases (general lab ware, fingerprints, dust) will degrade the isolated RNA. For short term storage freeze at -20°C, for long term storage freeze at -20°C				

-70°C.

Problem	Possible cause and suggestions	
Discrepancy between A ₂₆₀ quantification values and PCR quantification values	 Silica abrasion from the membrane Due to the typically low RNA content in very small samples and the resulting low total amount of isolated RNA, an RNA quantification via A₂₆₀ absorption measurement is often hampered due to the low sensitivity of the absorption measurement. When performing absorption measurements close to the detection limit of the photometer, the measurement may be influenced by minor amounts of silica abrasion. In order to prevent incorrect A₂₆₀-quantification of small RNA amounts centrifuge the eluate for 30 sec at >11.000 x g and take an aliquot for measurement without disturbing any sediment. Alternatively, use a silica abrasion insensitive RNA quantification method (e.g. RiboGreen fluorescent dye). 	
Unexpected A _{260/280} ratio	 Measurement not in the range of photometer detection limit In order to obtain a significant A₂₆₀/A₂₈₀ ratio it is necessary that the initially measured A₂₆₀ and A₂₈₀ values are significantly above the detection limit of the photometer used. An A₂₈₀ value close to the background noise of the photometer will cause unexpected A_{260/280} ratios. 	

6.2 Ordering information

Product	Cat. No.	Pack of
NucleoSpin [®] RNA XS	740902.10/.50/.250	10/50/250
NucleoSpin [®] RNA Clean-up XS	740903.10/.50/.250	10/50/250
NucleoSpin [®] RNA II	740955.10/.20/.50/.250	10/20/50/250
NucleoSpin [®] RNA L	740962.20	20
NucleoSpin [®] RNA/Protein	740933.10/.50/.250	10/50/250
NucleoSpin [®] RNA Clean-up	740948.10/.50/.250	10/50/250
NucleoSpin [®] RNA/DNA Buffer Set	740944	suitable for 100 preps
Buffer RA1	740961	50 ml
Buffer RA1	740961.500	500 ml
rDNase Set	740963	1 set
NucleoSpin [®] Filters	740606	50
Collection Tubes (2 ml)	740600	1000

6.3 Literature

Fleige S, Pfaffl MW.: RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006 Apr-Jun; 27(2-3):126-39. Epub 2006 Feb 15. Review.

Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C.: Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 2005 Mar 30;33(6):e56.

Miller CL, Diglisic S, Leister F, Webster M, Yolken RH.: Evaluating RNA status for RT-PCR in extracts of postmortem human brain tissue. Biotechniques. 2004 Apr; 36(4):628-33.

Schoor O, Weinschenk T, Hennenlotter J, Corvin S, Stenzl A, Rammensee HG, Stevanovic S.: Moderate degradation does not preclude microarray analysis of small amounts of RNA. Biotechniques. 2003 Dec; 35(6):1192-6, 1198-201.

6.4 **Product use restriction / warranty**

NucleoSpin[®] RNA XS kit components were developed, designed, distributed and sold for RESEARCH PURPOSES ONLY. They are suitable for IN – VITRO USES only. No claim or representation is intended for its use to identify any specific organism or for clinical use (diagnostic, prognostic, therapeutic, or blood banking).

It is rather the responsibility of the user to verify the use of the **NucleoSpin[®] RNA XS** kits for a specific application range as the performance characteristic of this kit has not been verified to a specific organism.

This MACHEREY-NAGEL product is shipped with documentation stating specifications and other technical information. MACHEREY-NAGEL warrants to meet the stated specifications. MACHEREY-NAGEL's sole obligation and the customer's sole remedy is limited to replacement of products free of charge in the event products fail to perform as warranted. Supplementary reference is made to the general business terms and conditions of MACHEREY-NAGEL, which are printed on the price list. Please contact us if you wish an extra copy.

MACHEREY-NAGEL does not warrant against damages or defects arising in shipping and handling (transport insurance for customers excluded), or out of accident or improper or abnormal use of this product; against defects in products or components not manufactured by MACHEREY-NAGEL, or against damages resulting from such non-MACHEREY-NAGEL components or products.

MACHEREY-NAGEL makes no other warranty of any kind whatsoever, and SPECIFICALLY DISCLAIMS AND EXCLUDES ALL OTHER WARRANTIES OF ANY KIND OR NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, AS TO THE SUITABILITY, REPRODUCTIVITY, DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, CONDITION, OR ANY OTHER MATTER WITH RESPECT TO MACHEREY-NAGEL PRODUCTS.

In no event shall MACHEREY-NAGEL be liable for claims for any other damages, whether direct, indirect, incidental, compensatory, foreseeable, consequential, or special (including but not limited to loss of use, revenue or profit), whether based upon warranty, contract, tort (including negligence) or strict liability arising in connection with the sale or the failure of MACHEREY-NAGEL products to perform in accordance with the stated specifications. This warranty is exclusive and MACHEREY-NAGEL makes no other warranty expressed or implied.

The warranty provided herein and the data, specifications and descriptions of this MACHEREY-NAGEL product appearing in MACHEREY-NAGEL published catalogues and product literature are MACHEREY-NAGEL's sole representations concerning the product and warranty. No other statements or representations, written or oral, by MACHEREY-NAGEL's employees, agent or representatives, except written statements signed by a duly authorized officer of MACHEREY-NAGEL are authorized; they should not be relied upon by the customer and are not a part of the contract of sale or of this warranty.

Product claims are subject to change. Therefore please contact our Technical Service Team for the most up-to-date information on MACHEREY-NAGEL products. You may also contact your local distributor for general scientific information. Applications mentioned in MACHEREY-NAGEL literature are provided for informational purposes only. MACHEREY-NAGEL does not warrant that all applications have been tested in MACHEREY-NAGEL laboratories using

MACHEREY-NAGEL products. MACHEREY-NAGEL does not warrant the correctness of any of those applications.

Please contact:

MACHEREY-NAGEL Germany Tel.: +49 (0) 24 21 969-270 e-mail: TECH-BIO@mn-net.com

Last updated 12/2006, Rev. 02